Embedded Zassenhaus Expansion to Splitting Schemes: Theory and Multiphysics Applications
نویسندگان
چکیده
منابع مشابه
Embedded correlated wavefunction schemes: theory and applications.
Conspectus Ab initio modeling of matter has become a pillar of chemical research: with ever-increasing computational power, simulations can be used to accurately predict, for example, chemical reaction rates, electronic and mechanical properties of materials, and dynamical properties of liquids. Many competing quantum mechanical methods have been developed over the years that vary in computatio...
متن کاملHigher order operator splitting methods via Zassenhaus product formula: Theory and applications
In this paper, we contribute higher order operator-splitting method improved by Zassenhaus product. We apply the contribution to classical and iterative splitting methods. The underlying analysis to obtain higher order operator-splitting methods is presented. While applying the methods to partial differential equations, the benefits of balancing time and spatial scales are discussed to accelera...
متن کاملMultiphysics Applications of Ace3p∗
The TEM3P module of ACE3P, a parallel finite-element electromagnetic code suite from SLAC, focuses on the multiphysics simulation capabilities, including thermal and mechanical analysis for accelerator applications. In this paper, thermal analysis of coupler feedthroughs to superconducting rf (SRF) cavities will be presented. For the realistic simulation, internal boundary condition is implemen...
متن کاملDiplomarbeit Theory of m - Schemes and Applications to Polynomial
Kurzfassung Im Folgenden fasse ich in verkürzter Form die wichtigsten Ideen und Resultate meiner Diplomarbeit mit dem Titel " Theory of m-Schemes and Applications to Polynomial Factoring " (zu Deutsch: " m-Schemes und ihre Anwendungen in der Polynomfaktorisierung ") in deutscher Sprache zusammen. Das Thema dieser Arbeit ist ein neuer Ansatz für die Polynomfaktorisierungüber endlichen Körpern, k...
متن کاملQuasi–Lie schemes: theory and applications
A powerful method to solve nonlinear first-order ordinary differential equations, which is based on a geometrical understanding of the corresponding dynamics of the so-called Lie systems, is developed. This method enables us not only to solve some of these equations, but also gives geometrical explanations for some, already known, ad hoc methods of dealing with such problems. MSC 2000: 34A26 (P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Differential Equations
سال: 2013
ISSN: 1687-9643,1687-9651
DOI: 10.1155/2013/314290